自有史以来,化学工业在发展生产力、保障人类社会生活、应付战争等方面扮演着重要的角色,它最初是对天然物质进行简单加工以生产化学品,后来是进行深度加工和仿制,以至创造出自然界根本没有的产品。它对于在工业革命和国民经济建设中起着重要的作用。现在一般来说,化学工业,是直利用化学反应改变物质结构、成份、形态来生产化学产品的工业部门。 化学工业是于19世纪初形成,并发展较快的一个工业部门。
1 古代的化学加工
化学加工在形成工业之前的历史,可以追溯到远古时期。据考古发现,至少在10000年以前中国人已掌握了用窑穴烧制陶器的技艺,5000年以前已通过利用日光蒸发海水、结晶制盐;埃及人在5000年以前的第三王朝时期开始酿造葡萄酒,并在生产过程中用布袋对葡萄汁进行过滤。但在相当长的时期里,这些操作都是规模很小的手工作业。这些虽然未形成工业,但是为18世纪的工业形成准备了条件。
2 早期化学工业
作为现代工程学科之一的化学工业,则是在19世纪随着大规模制造化学产品的生产过程的发展而出现的。化学工业是从19世纪初开始形成,并发展较快的一个工业部门。它的内部分类比较复杂,过去把化学工业部门分为无机化学、有机化学和高分子化学工业三大类,无机化学主要有酸、碱、盐、硅盐酸等;有机化学主要有塑料、农药等工业;高分子化学主要有合成橡胶,合成纤维。随着化学工业的发展,跨类的部门层出不穷,逐步形成化肥、农药、有机原料、塑料、合成橡胶、合成纤维、染料、涂料、医药、炸药、橡胶等门类繁多的化学工业。但是这些萌芽产品,在品种、产量、质量等方面都远不能满足社会的要求。所以,上述基础有机化学品的生产和高分子材料生产,在建立起石油化工以后,都获得很大发展。
3 大发展时期的化学工业
从20世纪初至战后的60年代,这是化学工业真正成为大规模生产的主要阶段,一些主要领域都是在这一时期形成的。石油化工得到了发展,进行了开发,逐渐兴起。这个时期之初,各国科学家提出的概念和理论,奠定了化学工程的基础。它推动了生产技术的发展,无论是装置规模,或产品产量都增长很快。
合成氨工业 20世纪初期异军突起,用物理化学的反应平衡理论,氮气和氢气直接合成氨的催化方法,以及原料气与产品分离后,经补充再循环的设想,进一步解决了设备问题。合成氨原用焦炭为原料,40年代以后改为石油或天然气,使化学工业与石油工业两大部门更密切地联系起来,合理地利用原料和能量。
石油化工 1920年美国用生产,这是大规模发展石油化工的开端。在第二次世界大战以后,由于化工产品市场不断扩大,石油可提供大量廉价有机化工原料,同时由于化工生产技术的发展,逐步形成石油化工。西欧、日本等也以原油为原料,发展石油化工。同一原料或同一产品,各化工企业却有不同的工艺路线或不同催化剂。由于基本有机原料及高分子材料单体都以石油化工为原料,所以人们以乙烯的产量作为衡量有机化工的标志。80年代,90%以上的有机化工产品,来自石油化工
高分子化工 高分子材料在战时用于军事,战后转为民用,获得极大的发展,成为新的材料工业。例如天然橡胶,天然橡胶产于热带,受阻于海运,各国皆研究。1937年德国法本公司开发获得成功。1937年美国 成功地合成尼龙 66。塑料方面,继酚醛树脂后,又生产了、醇酸树脂等热固性树脂。30年代后,低压聚乙烯、等规聚丙烯的开发成功。第二次世界大战后,一些也陆续用于汽车工业,还作为建筑材料、包装材料等,并逐渐成为塑料的大品种。
精细化工 40年代瑞士P.H.米勒发明第一个有机氯农药之后,又开发一系列有机氯、有机磷,后者具有胃杀、触杀、内吸等特殊作用。60年代,出现了一些性能很好的品种,如吡啶类除草剂、苯并咪唑杀菌剂等。第二次世界大战后,丁苯胶乳制成水性涂料,成为建筑涂料的大品种。采用高压无空气喷涂、静电喷涂、电泳涂装、阴极电沉积涂装、光固化等新技术(见),可节省劳力和材料,并从而发展了相应的涂料品种。
4 现代化学工业
20世纪60~70年代以来,化学工业各企业间竞争激烈,一方面由于对反应过程的深入了解,可以使一些传统的基本化工产品的生产装置,日趋大型化,以降低成本。与此同时,由于新技术革命的兴起,对化学工业提出了新的要求,推动了化学工业的技术进步,发展了精细化工、超纯物质、新型结构材料和功能材料。
信息技术用化学品 60年代以来,大规模集成电路和电子工业迅速发展,所需电子计算机的器件材料和信息记录材料得到发展。60年代以后,多晶硅和单晶硅的产量以每年20%的速度增长。随着半导体器件的发展,气态源如磷化氢 (PH )等日趋重要。在大规模集成电路制备过程中,需用多种,其杂质含量小于1ppm,对水分及尘埃含量也有严格要求。大规模集成电路的另一种基材为,其质量和稳定性直接影响其集成度和成品率。此外,对基质材料、密封材料、焊剂等也有严格要求。1963年,荷兰菲利浦公司研制盒式录音成功后,日益普及。它不仅用于音频记录、视频记录等,更重要的是用于计算器作为外存储器及内存储器,有磁带、磁盘、磁鼓、磁泡、磁卡等多种类型。为重要的信息材料,不仅用于光纤通信,且在工业上、医疗上作为内窥镜材料。
高性能合成材料 60年代以后,出现聚苯并噻唑和聚苯并咪唑为耐高温树脂,耐热性高,可作烧蚀材料,用于火箭。共聚、共混和复合使结构材料改性,例如多元醇预聚物与经催化反应,为尼龙聚醚嵌段共聚物,具有高冲击强度和耐热性能,用于农业和建筑机械。另一种是以纤维增强树脂的高分子复合材料。所用树脂主要为环氧树脂、不饱和聚酯、聚酰胺 聚酰亚胺等 这些复合材料比重轻、比强高、韧性好,特别适用于航天、航空及其他交通运输工具的结构件,以代替金属,节省能量。和含氟材料也发展迅速,由于它们具有突出的耐高低温性能、优良电性能、耐老化、耐辐射,广泛用于电子与电器工业、原子能工业和航天工业。又由于它们具有生理相容性,可作人造器官和生物医疗器材。
能源材料和节能材料 50年代原子能工业开始发展,要求化工企业生产重水、吸收中子材料和传热材料以满足需要。航天事业需要高能固体推进剂由胶粘剂、增塑剂、氧化剂和添加剂所组成。液体高能燃料有液氢、煤油、偏二甲肼、无水肼等,氧化剂有液氧、发烟硝酸、四氧化二氮。这些产品都有严格的性能要求,已形成一个专门的生产行业。为了满足节能和环保的要求,1960年美国试制成可以实用的膜,以淡化、处理工业污水,以后又扩展用于医药、食品工业。但这种膜易于生物降解,也易水解,使用寿命短。1970年,开发了芳香族聚酰胺反渗透膜,它能够抗生物降解,但不能抗游离氯。1977年,改进后的复合膜用于海水淡化,每立方米淡水仅耗电大大减少 此外,还开发聚砜中空纤维气体分离膜,用于合成氨尾气的氢氮分离及其他多种气体分离。这种技术比其他工业分离方法可以节能。1971年,美国福特汽车公司及威斯汀豪斯电气公司以β-氮化硅 (β-Si N )为燃汽透平的结构材料,运行温度曾高达1370℃,提高功效,节省燃料,减少污染,为良好的节能材料。现主要用作陶瓷发动机、透平叶片、导电陶瓷、人造骨等。陶瓷的主要物系有氧化物系,如氧化铝(Al O )、氧化锆(ZrO )等,和非氧化物系,如碳化物(SiC)、氮化物(BN)、氮化硅(Si N )等。80年代,为改进陶瓷的脆性,又在开发硅碳纤维增强陶瓷。
在现代化学工业过程中,化学工业呈现规模化,大型化。规模大型化 1963年,美国凯洛格公司设计建设第一套日产540t合成氨单系列装置,是化工生产装置大型化的标志。从70年代起,合成氨单系列生产能力已发展到日产 900~1350t,80 年代出现了日产1800~2700t合成氨的设计,其吨氨总能量消耗大幅度下降。乙烯单系列生产规模,从50年代年产50kt发展到70年代年产100~300kt,80年代初新建的乙烯装置最大生产能力达年产 680kt。其他化工生产装置如硫酸、烧碱、基本有机原料、合成材料等均向大型化发展。这样,减少了对环境的污染,提高了长期运行的可靠性,促进了安全、环保的预测和防护技术的迅速发展。
原创文章,作者:sowenn,如若转载,请注明出处:https://www.diyilunwen.com/lwfw/huaxue/3934.html